
ELSE - EL Locus Solus'
Externals

for the Pure Data programming language

Version: 1.0-0 beta-37 With Live Electronics Tutorial

Released: March 13th, 2021

 This work is free. You can redistribute it and/or modify it
under the
 terms of the Do What The Fuck You Want To Public License,
Version 2,
 as published by Sam Hocevar. See License.txt https://github.co
m/porres/pd-else/blob/master/License.txt and http://www.wtf
pl.net/ for more details

 Other licenses may apply for specific objects and this is
informed in the source code (example: the [giga.rev~] object).

Copyright © 2017-2020 Alexandre Torres Porres

af://n2
af://n3
af://n5
af://n6
https://github.com/porres/pd-else/blob/master/License.txt
http://www.wtfpl.net/

About ELSE

 This version of ELSE needs *Pd 0.51-3 or above, download
Pure Data from: http://msp.ucsd.edu/software.html

 ELSE is a big library for Pure Data that provides a cohesive
system for computer music, it also serves as a basis for an Live
Electronics Tutorial by the same author: Alexandre Torres
Porres. This tutorial is also found as part of the download of the
ELSE library. Note that you can also download Camomile with
support for ELSE externals, see https://github.com/emviveros/
Camomile-ELSE/releases/tag/beta36

 This project is still in a beta phase, where changes may occur
and backwards compatibility is not guaranteed until a final
release is available.

 This library's repository resides at https://github.com/porres
/pd-else/.

Downloading ELSE:

 You can get ELSE from https://github.com/porres/pd-else/rel
eases - where all releases are available, but ELSE is also found
via Pd's external manager (In Pd, just go for Help => Find
Externals and search for 'else'). In any case, you should
download the folder to a place Pd automatically searches for,
and the common place is the ~/documents/pd/externals folder.

 Note that since version 1.0-0 beta 28, the downloads of ELSE
also contain a "live eletronics tutorial" as part of the package
(as mentioned above). Look for the 'live-electronics-tutorial'
folder inside it and also check its README on how to install it.

 Instructions on how to build ELSE are provided below.

af://n15
http://msp.ucsd.edu/software.html
https://github.com/emviveros/Camomile-ELSE/releases/tag/beta36
https://github.com/porres/pd-else/
af://n22
https://github.com/porres/pd-else/releases

Installing ELSE:

 ELSE comes as a set of separate binaries and abstractions, so
it works if you just add its folder to the path or use [declare -
path else]. ELSE comes with a binary that you can use load via
"Preferences => Startup" or with [declare -lib else], but all that
this does is print information of whaty version of ELSE you got
wehn you open Pd. You can also just load the 'else' external for
that same purpose, check its help file.

 It's important to stress this release needs Pd Vanilla 0.51-1 or
above (Pd Extended/Purr Data aren't supported).

More About ELSE

"EL Locus Solus" organizes cultural events/concerts and music
technology courses () http://alexandre-torres.wixsite.com/el-l
ocus-solus) where a Live Electronics tutorial is provided with
examples in Pure Data for its courses. These have just been
translated and completely rewritten to english with plans of
being accompanied by a book. The first versions are available at:
https://github.com/porres/Live-Electronic-Music-Tutorial.
This tutorial it solely depends on the ELSE library and it is a
great didactic companion to this library. Both the library and
the tutorial are provided as a single download, directly from
Pure Data or GitHub.

These examples were first developed for the now abandoned Pd
Extended, making extensive use of the existing objects
available in Pd Extended's libraries. Even though Pd Extended
had many externals, there was the need at some point for

af://n28
af://n33
http://alexandre-torres.wixsite.com/el-locus-solus
https://github.com/porres/Live-Electronic-Music-Tutorial

something "else" - thus, this library emerged with the goal of
providing more objects to include missing functionalities in the
Pd Ecossystem.

But the library grew to encompass functionalities found in
other Pd objects/libraries from old Pd Extended as well, with a
different design and more functionalities. This was done in
order to remove ALL the dependencies of the didactic material
from these other libraries - with the goal to rely on just a single
library that's alive (in active development) instead of many
projects that are now long gone abandoned or not receiving
attention. I'm also involved in maintaining Cyclone, a legacy
library for Pd (see: https://github.com/porres/pd-cyclone). But
ELSE also superseeds cyclone for the purposes of this didactic
material.

The goal of ELSE also outgrew the didactic material and
includes now objects not necessarily depicted in the computer
music examples. Moreover, even basic elements from Pd Vanilla
are being redesigned into new objects. So that's it, ELSE is
becoming a quite big library and keeps growing and growing.

It will still take a little while for ELSE to stabilize into a final
version. For now, it's at an early "Beta" stage of development,
where drastic changes may occur and backwards compatibility
is not guaranteed until a final release is available.

Building ELSE for Pd Vanilla:

ELSE relies on the build system called "pd-lib-builder" by
Katja Vetter (check the project in: https://github.com/pure-dat
a/pd-lib-builder). PdLibBuilder tries to find the Pd source
directory at several common locations, but when this fails, you
have to specify the path yourself using the pdincludepath

https://github.com/porres/pd-cyclone
af://n41
https://github.com/pure-data/pd-lib-builder

make pdincludepath=~/pd-0.51-1/src/
(for Windows/MinGW add 'pdbinpath=~/pd-
0.51-1/bin/)

make install objectsdir=../else-build

make CC=arm-linux-gnueabihf-gcc
target.arch=arm7l install
objectsdir=../

variable. Example:

Installing with pdlibbuilder

Go to the pd-else folder and use "objectsdir" to set a relative
path for your build, something like:

Then move it to your preferred install folder for Pd and add it to
the path.

Cross compiling is also possible with something like this

Acknowledgements

 Special thanks to Flávio Luis Schiavoni, for helping me out in
a few things when I first started coding and collaborating with
the objects: [median~] and [keyboard].

 I'd also like to thank my cyclone buddy Matt Barber, for
developing the "magic" code I'm using here and also
collaborating with the [float2bits], [brown~], [gray~],
[perlin~] and [pinknoise~] objects.

af://n54

Current Object list (399objects):
ASSORTED: [04]

[table~]
[meter]
[euclid]
[else]

FFT: [02]

[hann~]
[bin.shift~]

TUNING/NOTES: [09]

[autotune]
[autotune2]
[retune]
[eqdiv]
[frac2dec]
[dec2frac]
[midi2freq]
[pitch2note]
[note2pitch]

PATCH/SUBPATCH MANAGEMENT: [18]

[args]
[dollsym]
[receiver]
[blocksize~]
[properties]
[fontsize]
[canvas.active]
[canvas.bounds]
[click]
[canvas.gop]
[canvas.pos]
[canvas.edit]

af://n59

[canvas.vis]
[canvas.setname]
[canvas.wname]
[canvas.name]
[canvas.zoom]
[loadbanger] / [lb]

MESSAGE MANAGEMENT: [23]

[format]
[nbang]
[unite]
[separate]
[symbol2any]
[any2symbol]
[buffer]
[changed]
[hot]
[initmess]
[message]
[pack2]
[pick]
[limit]
[spread]
[router]
[routeall]
[routetype]
[selector]
[stack]
[trigger2] / [t2]
[sig2float~] / [s2f~]
[float2sig~] / [f2s~]

LIST/MESSAGE MANAGEMENT: [15]

[break]
[order]
[combine]
[group]
[iterate]

[insert]
[scramble]
[sort]
[reverse]
[rotate]
[sum]
[stream]
[slice]
[merge]
[unmerge]

FILE MANAGEMENT: [01]

[dir]

MIDI: [18]

[midi]
[sysrt.in]
[sysrt.out]
[ctl.in]
[ctl.out]
[touch.in]
[touch.out]
[pgm.in]
[pgm.out]
[bend.in]
[bend.out]
[note.in]
[note.out]
[clock]
[panic]
[mono]
[voices]
[suspedal]

MATH: FUNCTIONS: [26]

[add~]
[add]

[median]
[avg]
[mov.avg]
[count]
[gcd]
[lcm]
[ceil]
[ceil~]
[factor]
[floor]
[floor~]
[int~]
[rint~]
[rint]
[quantizer~]
[quantizer]
[fold]
[fold~]
[lastvalue]
[mag]
[mag~]
[sin~]
[wrap2]
[wrap2~]

MATH: CONVERSION: [27]

[hex2dec]
[bpm]
[dec2hex]
[car2pol]
[car2pol~]
[cents2ratio]
[cents2ratio~]
[ms2samps]
[ms2samps~]
[db2lin]
[db2lin~]
[float2bits]

[hz2rad]
[hz2rad~]
[lin2db]
[lin2db~]
[rad2hz]
[rad2hz~]
[ratio2cents]
[ratio2cents~]
[samps2ms]
[samps2ms~]
[pol2car]
[pol2car~]
[rescale]
[rescale~]
[op~]

MATH: CONSTANT VALUES: [04]

[sr~]
[nyquist~]
[pi]
[e]

MATH: RANDOM: [04]

[rand.f]
[rand.f~]
[rand.i]
[rand.i~]

LOGIC: [01]

[loop]

AUDIO PROCESSING: ASSORTED [23]

[downsample~]
[conv~]
[chorus~]
[del~]

[fbdelay~]
[ffdelay~]
[rdelay~]
[shaper~]
[crusher~]
[drive~]
[flanger~]
[freq.shift~]
[pitch.shift~]
[stretch.shift~]
[ping.pong~]
[rm~]
[tremolo~]
[vibrato~]
[vocoder~]
[morph~]
[freeze~]
[pvoc.freeze~]
[phaser~]

AUDIO PROCESSING: DYNAMICS [05]

[compress~]
[duck~]
[expand~]
[noisegate~]
[norm~]

AUDIO PROCESSING: REVERBERATION: [09]

[allpass.rev~]
[comb.rev~]
[echo.rev~]
[mono.rev~]
[stereo.rev~]
[free.rev~]
[giga.rev~]
[plate.rev~]
[fdn.rev~]

AUDIO PROCESSING: FILTERS [23]:

[allpass.2nd~]
[allpass.filt~]
[comb.filt~]
[lop.bw~]
[hip.bw~]
[biquads~]
[bandpass~]
[bandstop~]
[crossover~]
[bpbank~]
[bicoeff]
[brickwall~]
[eq~]
[highpass~]
[highshelf~]
[lowpass~]
[lowshelf~]
[mov.avg~]
[resonbank~]
[resonbank2~]
[resonant~]
[resonant2~]
[svfilter~]

SAMPLING/PLAYING/GRANULATION: [13]

[player~]
[gran.player~]
[pvoc.player~]
[pvoc.live~]
[grain.sampler~]
[grain.live~]
[batch.rec~]
[batch.write~]
[rec.file~]
[play.file~]
[tabplayer~]

[tabwriter~]
[sample~]

SYNTHESIS: GRANULAR SYNTHESIS: [01]

[grain.synth~]

SYNTHESIS: PHYSICAL MODELLING: [01]

[pluck~]

SYNTHESIS: OSCILLATORS (DETERMINISTIC GENERATORS):
[24]

[cosine~]
[impulse~] / [imp~]
[impulse2~] / [imp2~]
[parabolic~]
[pulse~]
[saw~]
[saw2~]
[oscbank~]
[oscbank2~]
[sine~]
[square~]
[tri~]
[vsaw~]
[pmosc~]
[wavetable~] / [wt~]
[bl.imp~]
[bl.imp2~]
[bl.saw~]
[bl.saw2~]
[bl.sine~]
[bl.square~]
[bl.tri~]
[bl.vsaw~]
[bl.wavetable~]

SYNTHESIS: CHAOTIC/NOISE GENERATORS: [25]

[brown~]
[clipnoise~]
[perlin~]
[crackle~]
[cusp~]
[fbsine~]
[fbsine2~]
[gbman~]
[gray~]
[henon~]
[ikeda~]
[latoocarfian~]
[lorenz~]
[lfnoise~]
[lincong~]
[logistic~]
[quad~]
[rampnoise~]
[randpulse~]
[randpulse2~]
[standard~]
[stepnoise~]
[pinknoise~]
[xmod~]
[xmod2~]

SIGNAL ROUTING: [12]

[balance~]
[pan2~]
[pan4~]
[pan8~]
[spread~]
[rotate~]
[xfade~]
[xgate~]
[xgate2~]
[xselect~]
[xselect2~]

[mtx~]

CONTROL: [26]

[mouse]
[canvas.mouse]
[adsr~]
[asr~]
[autofade~]
[autofade2~]
[decay~]
[decay2~]
[envelope~]
[envgen~]
[fader~]
[function~]
[lag~]
[lag2~]
[glide~]
[glide2~]
[ramp~]
[susloop~]
[drum.seq]
[sequencer]
[sequencer~]
[impseq~]
[lfo]
[phasor]
[impulse]
[pulse]

CONTROL: RANDOM: [09]

[rand.seq]
[markov]
[drunkard~]
[drunkard]
[randpulse]
[randpulse2]
[lfnoise]

[stepnoise]
[rampnoise]

 TRIGGERS: [28]

[above]
[above~]
[bangdiv]
[chance]
[chance~]
[dust~]
[dust2~]
[gatehold~]
[gate2imp~]
[pimp~]
[tempo]
[tempo~]
[pulsecount~]
[pulsediv~]
[sh~]
[schmitt]
[schmitt~]
[status]
[status~]
[trig.delay~]
[trig.delay2~]
[toggleff~]
[timed.gate]
[timed.gate~]
[match~]
[trig2bang]
[trig2bang~]
[trighold~]

ANALYSIS: [13]

[changed~]
[changed2~]
[detect~]
[lastvalue~]

[median~]
[peak~]
[range]
[range~]
[maxpeak~]
[rms~]
[mov.rms~]
[vu~]
[zerocross~]

GUI: [33]

[gui]
[pad]
[messbox]
[mtx.ctl]
[biplot]
[pic]
[colors]
[function]
[circle]
[slider2d]
[display]
[display~]
[out1~]
[out~]
[out4~]
[out8~]
[gain~]
[gain2~]
[button]
[keyboard]
[graph~]
[range.hsl]
[spectrograph~]
[meter~]
[meter2~]
[meter4~]
[meter8~]

[note]
[mix2~]
[mix4~]
[setdsp~]
[openfile]
[oscilloscope~]

EXTRA: [02]

[output~]
[cmul~]

